8 research outputs found

    routing in mobile opportunistic social networks with selfish nodes

    Get PDF
    When the connection to Internet is not available during networking activities, an opportunistic approach exploits the encounters between mobile human-carried devices for exchanging information. When users encounter each other, their handheld devices can communicate in a cooperative way, using the encounter opportunities for forwarding their messages, in a wireless manner. But, analyzing real behaviors, most of the nodes exhibit selfish behaviors, mostly to preserve the limited resources (data buffers and residual energy). That is the reason why node selfishness should be taken into account when describing networking activities: in this paper, we first evaluate the effects of node selfishness in opportunistic networks. Then, we propose a routing mechanism for managing node selfishness in opportunistic communications, namely, SORSI (Social-based Opportunistic Routing with Selfishness detection and Incentive mechanisms). SORSI exploits the social-based nature of node mobility and other social features of nodes to optimize message dissemination together with a selfishness detection mechanism, aiming at discouraging selfish behaviors and boosting data forwarding. Simulating several percentages of selfish nodes, our results on real-world mobility traces show that SORSI is able to outperform the social-based schemes Bubble Rap and SPRINT-SELF, employing also selfishness management in terms of message delivery ratio, overhead cost, and end-to-end average latency. Moreover, SORSI achieves delivery ratios and average latencies comparable to Epidemic Routing while having a significant lower overhead cost

    Computation in Complex Networks

    No full text
    The Special Issue on “Computation in Complex Networks” focused on gathering highly original papers in the field of current complex network research [...

    Computation in Complex Networks

    No full text
    The Special Issue on “Computation in Complex Networks” focused on gathering highly original papers in the field of current complex network research [...

    Using multi-layer social networks for opportunistic routing

    No full text
    Dottorato di Ricerca in Ingegneria dei Sistemi e Informatica, Ciclo XXV, a.a. 2012UniversitĂ  della Calabri

    Network-based prediction of COVID-19 epidemic spreading in Italy

    No full text
    Initially emerged in the Chinese city Wuhan and subsequently spread almost worldwide causing a pandemic, the SARS-CoV-2 virus follows reasonably well the Susceptible–Infectious–Recovered (SIR) epidemic model on contact networks in the Chinese case. In this paper, we investigate the prediction accuracy of the SIR model on networks also for Italy. Specifically, the Italian regions are a metapopulation represented by network nodes and the network links are the interactions between those regions. Then, we modify the network-based SIR model in order to take into account the different lockdown measures adopted by the Italian Government in the various phases of the spreading of the COVID-19. Our results indicate that the network-based model better predicts the daily cumulative infected individuals when time-varying lockdown protocols are incorporated in the classical SIR model.Network Architectures and Service
    corecore